■マット・タディはビッグデータ活用の基礎を成す統計学について完璧かつ配慮の行き届いた本を書き上げた。この素晴らしい教材には実例、技術、洞察がぎっしりと詰まっている。多くの機械学習の教材とは異なり、本書は相関関係が因果関係ではないという問題に取り組み、データから信頼に足る解釈を得るための手法を提供している。
———プレストン・マカフィー[元マイクロソフト チーフエコノミスト兼バイスプレジデント ヤフー バイスプレジデント・チーフエコノミスト グーグル研究責任者 カリフォルニア工科大学教授兼役員]
■シカゴ大学ブース・スクール・オブ・ビジネスの人気教授を務め、マイクロソフトとアマゾンでデータサイエンスチームを率いた経験から、マット・タディは最先端の企業でデータに基づいた意思決定を行なうことを志すMBAや技術者に向けた見事な本を書き上げた。最新の統計学、機械学習アルゴリズム、社会科学の因果モデルから得られる重要な概念を巧みに織り上げ、精彩を放つタペストリーに仕上げている。本書を読めば流行りの専門語の意味が誰にでもわかるようになっている。この分野の標準的な教材となるだろう。
———グイド・インベンス[スタンフォード大学経営大学院教授(経済学) 『Causal Inference for Statistics, Social, and Biomedical Sciences』共著者]
ビッグデータを構造的に理解、近未来の手がかり、ビジネスチャンスを洗い出し、次の一手につなげる
巨大IT企業アマゾン・ドット・コムのバイスプレジデントが教える、ビジネスにおける意思決定の最適化・自動化・加速化
———プレストン・マカフィー[元マイクロソフト チーフエコノミスト兼バイスプレジデント ヤフー バイスプレジデント・チーフエコノミスト グーグル研究責任者 カリフォルニア工科大学教授兼役員]
■シカゴ大学ブース・スクール・オブ・ビジネスの人気教授を務め、マイクロソフトとアマゾンでデータサイエンスチームを率いた経験から、マット・タディは最先端の企業でデータに基づいた意思決定を行なうことを志すMBAや技術者に向けた見事な本を書き上げた。最新の統計学、機械学習アルゴリズム、社会科学の因果モデルから得られる重要な概念を巧みに織り上げ、精彩を放つタペストリーに仕上げている。本書を読めば流行りの専門語の意味が誰にでもわかるようになっている。この分野の標準的な教材となるだろう。
———グイド・インベンス[スタンフォード大学経営大学院教授(経済学) 『Causal Inference for Statistics, Social, and Biomedical Sciences』共著者]
ビッグデータを構造的に理解、近未来の手がかり、ビジネスチャンスを洗い出し、次の一手につなげる
巨大IT企業アマゾン・ドット・コムのバイスプレジデントが教える、ビジネスにおける意思決定の最適化・自動化・加速化